Skip to content

Commit

Permalink
missing variables added
Browse files Browse the repository at this point in the history
  • Loading branch information
abhi0395 committed Jul 27, 2024
1 parent 6be071c commit a813594
Show file tree
Hide file tree
Showing 5 changed files with 4 additions and 9 deletions.
5 changes: 1 addition & 4 deletions qsoabsfind/absfinder.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
contiguous_pixel_remover, check_error_on_residual, redshift_estimate, absorber_search_window
)
from .ew import measure_absorber_properties_double_gaussian
from .constants import lines, search_parameters, speed_of_light, oscillator_parameters
from .constants import lines, speed_of_light, oscillator_parameters
from .spec import QSOSpecRead

def find_valid_indices(our_z, residual_our_z, lam_search, conv_arr, sigma_cr, coeff_sigma, d_pix, beta, line1, line2):
Expand Down Expand Up @@ -99,9 +99,6 @@ def convolution_method_absorber_finder_in_QSO_spectra(fits_file, spec_index, abs
line_sep = line2 - line1
resolution = 69 # km/s for SDSS or DESI

delta_z_start = lines['dz_start']
delta_z_end = lines['dz_end']

del_sigma = line1 * resolution / speed_of_light # in Ang

bound = ((np.array([2e-2, line1 - d_pix, del_sigma, 2e-2, line2 - d_pix, del_sigma])),
Expand Down
3 changes: 2 additions & 1 deletion qsoabsfind/ew.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
import numpy as np
from scipy.optimize import curve_fit
from .constants import lines
from .utils import double_gaussian

# Example usage within double_curve_fit
def double_curve_fit(index, fun_to_run, lam_fit_range, nmf_resi_fit, error_fit, bounds, init_cond, iter_n):
Expand Down Expand Up @@ -211,7 +212,7 @@ def measure_absorber_properties_double_gaussian(index, wavelength, flux, error,
init_cond = [amp_first_nmf, line_first, sigma1, 0.54 * amp_first_nmf, line_second, sigma2]

fitting_param_for_spectrum[k], fitting_param_std_for_spectrum[k], EW_first_line[k], EW_second_line[k], EW_total[k] = double_curve_fit(
index, gauss, lam_fit, nmf_resi, error_fit=error_flux, bounds=bound, init_cond=init_cond, iter_n=1000)
index, double_gaussian, lam_fit, nmf_resi, error_fit=error_flux, bounds=bound, init_cond=init_cond, iter_n=1000)
#errors on EW
if not use_covariance:
EW_first_line_error[k], EW_second_line_error[k], EW_total_error[k] = calculate_ew_errors(fitting_param_for_spectrum[k], fitting_param_std_for_spectrum[k])
Expand Down
2 changes: 1 addition & 1 deletion qsoabsfind/io.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ def save_results_to_fits(results, output_file, headers, absorber):
fits.Column(name='GAUSS_FIT_STD', format='6D', array=np.array(results['gauss_fit_std'])),
fits.Column(name=f'{EW_1}', format='D', array=np.array(results['ew_1_mean'])),
fits.Column(name=f'{EW_2}', format='D', array=np.array(results['ew_2_mean'])),
fits.Column(name=ew_total, format='D', array=np.array(results['ew_total_mean'])),
fits.Column(name=f'{EW_TOTAL}', format='D', array=np.array(results['ew_total_mean'])),
fits.Column(name=f'{EW_1}_ERROR', format='D', array=np.array(results['ew_1_error'])),
fits.Column(name=f'{EW_2}_ERROR', format='D', array=np.array(results['ew_2_error'])),
fits.Column(name=f'{EW_TOTAL}_ERROR', format='D', array=np.array(results['ew_total_error'])),
Expand Down
1 change: 0 additions & 1 deletion qsoabsfind/parallel_convolution.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@
import argparse
import time
from multiprocessing import Pool
from astropy.io import fits
from importlib import import_module
from .absfinder import convolution_method_absorber_finder_in_QSO_spectra
from .io import save_results_to_fits
Expand Down
2 changes: 0 additions & 2 deletions qsoabsfind/spec.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
import numpy as np
import argparse
from .io import read_fits_file
from .utils import elapsed
import time
Expand Down

0 comments on commit a813594

Please sign in to comment.